—Chapter 3—

Laplace's
Equation
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3-1 Laplace's Equation
A. LAPLACE'S EQUATION

(1) For an electrostatic field, we have

v.E=P
€o
VXE=0

and E goes to zero at infinity. If p(r) is given, the electric field E is
uniquely determined by

—

E=-Vo

where

1 !
= _p(_r)_.d3r'
dmeg ) |7 — 7|

(2) From the differential form of Gauss's law, we obtain

vE=v(—wﬁ=—W¢:£
€o
Vip =— L Poisson equation

€o
where V2 is called the Laplacian.

(3) In regions where there is no charge, so p = 0, we have

ViZp =10 Laplace's equation
EXAMPLES:
1. The potential of a sphere

pR*  pr? .
_— inside the sphere
2ey b€

@(r) = R
P , outside the sphere
3€or

Show the potential satisfying Laplace's equation.

ANSWER:

The Laplacian in spherical coordinates |c.f.3-3]|:

Voo 19(,0 N 1 ad/ . 0 0 N 1 92
“r2or\" ar) T r2sineaa\*" " 90) " vZsinz @ 02
Inside the sphere:
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10 ] pr? p 10 p
VZ - 2 __ |\ = 2._2 L
() r2or <T 6r> ( 6€0> 6€y 12 Or (r r) €0
satisfying Poisson's equation.
Outside the sphere:

10 2\ (pR? pR31 0 1
2 _ 9 (2P \_ PR 29 )\
Ve = r2or (r 6r> (3607') 3ey T2 0r r r2 0

satisfying Laplace's equation.

2. If o satisfies Laplace's equation, then the average value of ¢ over
the surface of any sphere is equal to the value of ¢ at the center
of the sphere.

PROOF:

1
Pavg =Wf@da

_ 1 J 91 2 singded
" 4AmR? ) Ameyr st ¢

B 1 q fﬂ.’ RZ

4mR% 4mey Jo \zZ + RZ — 2R cos 6
-_1 fan L 7 ¥ RE = 22R cos8 ) do
~ 8megR%), T do\z z #Ieos
q 1

= greiz (R = =R

__ 4
4megz

sinfdo - 2w

(4) A solution of Laplace's equation exists requiring a region (finite or

03%3H



infinite), over which the differential equation is valid. This region has a
boundary (could be infinite) on which a boundary condition is applied.
NOTE:

1. The second derivatives must exist throughout the region. This
condition implies in turn that the first derivatives of ¢ are
continuous. Any function that satisfies these conditions (and is
thus a solution to Laplaces equation) is a HARMONIC function.

2. The second derivative must be greater than or less than zero for
maxima or minima, but it is equal to zero for Laplace's equation.
Harmonic functions have their maxima and minima at the
boundaries of the region—any solution to Laplace's equation has
no local minima or maxima, so the extrema must occur at the
boudaries.

Harmonic .
Not Harmenic
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(5) The solution to Laplace's equation in some volume V is uniquely
determined if ¢ is specified on the boundary surface S.

P wanted in
this volume
(p specified %)
on this
surface (S)
PROOF:

Suppose there are two solutions to Laplace's equation:
V2@, =0 and V2@, =0
both of which assume the specified value on the same surface
(boundary).
Let @3 = @; — @,. We have V2@5 = V2@, — V2@, =0
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Since at the boundary, @1 = @,, so @3 = @1 — @, = 0 at the boundary.
However, Laplace's equation allows no local maxima or minima—all
extrema occur on the boundaries. Therefore @3 must be zero
everywhere, and hence

P1= P2
When suitable boundary conditions are satisfied, the solutions to
Laplace's equation are unique.

BOUNDARY CONDITIONS ON THE SURFACE

For a charged conductor with surface charge density a(?).
Since

1)
Poutside — Pinside = (lsl_r}}) <_f E- d§> =0
-6
the potential is continuous across the surface of the conductor
(Dirichlet boundary conditions).

A charged conductor with surface charge density a. We choose a
Gaussian surface for an extreme small area dd and let the thickness go
to zero to avoid the parallel components of E through the Gaussian
surface.
2) Conductor
Ey =0
Eyn =0

Gauss surface

Thus, we obtain

S oda o
E'da:Ellda_EZLda:—_':>E1J__ EZJ_ =
S h,—/ \:,._J EO \.,._4 P— 60
Air =0 Air conductor
conductor
E| is discontinuous across the surface of the conductor by an amount
/€.
Since
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¢
E,=-Vo fi=——
1 Q-n on

the discontinuity of E; can be expressed in terms of the normal
derivative of ¢ as
a(poutside _ a(Pinside - _ O-(F)

----- Neumann boundary conditions
on on €

(3) For if we use Stokes' theorem and let the width of the closed loop go to

Z€ero.
@) Conductor \ (1) Air
EZJ_ =0
l
Ey=0 !
1
Eyy
closed loop |
i
thickness — 0

Thus, we obtain

fg-d§=E1udS—Ezud5 =0=Ey—- E =0
¢ X =0 Air e

Air =0 Air  conductor
conductor

E, is continuous across the surface of the conductor.
Thus, we obtain that ¢ is constant on the surface (Dirichlet boundary

conditions).
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3-2 Image Charge Method

METHOD OF IMAGE CHARGES

The method of image charges is a calculational trick that replaces the
original boundary by appropriate image charges in lieu of a formal
solution of Poisson's or Laplace's equation so that the original problem
is greatly simplified.

The basic principle of the method of images is the uniqueness theorem.
As long as (i) the solution satisfies Poisson's or Laplace's equation and
(ii) the solution satisfies the given boundary condition, the simplest
solution should be taken.

For instance, it can be quite difficult to evaluate the charge
distribution that forms on a conductor close to a charge, but we know
the conductor is an equipotential surface. By adding a "false" charge
outside of the region of interest that creates the same equipotential
surface, and removing the conductor, we end up with the same field
configuration.

INFINITE PLANE OF CONDUCTOR

A point charge near an infinite grounded conducting plane.

2>0 ®q
d
z=10
/ l
grounded =

conducting
plane
z <0

Method I
By direct evaluation:
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( ) 1 q + 1 j o d
(p xl y;Z - 4-7'[60 \/xz + yZ + (Z — d)z 41‘[60 o a
conducting

plane

point
charge
We don't know the surface charge distribution of the conducting plane.

Method IT

Solving Poisson's equation
o

2, —
% 0= —a
with boundary conditions:
(1) The conducting plate is an equipotential surface and the potential
of the plate is zero,
@(0)=0whenz=0
(1) The potential at infinity is zero,
e(r)—>0as7r > ©
Method IIT
By method of images:
real charge

T

z>0 19q 1 8¢
d d
o 1 '
z2=0 ] l """"" '
g‘rmm(l(:‘d = d image charge
conducting / ) )
plane S
- ¥
z < {] L o _q
We shall refer to this as the analog problem and obtain
o(x7,7) = | q B q
e Ameo |\ /x2 +y2 + (z—d)? Jx2+y2+ (z+d)?

with properties:

¢(x,y,0) =

g q _ q _
Ameo | \[x2 +y2 + (=d)2  [x2+y%+ dz]

o(x,y,z) >0asx? +y% +2z2 >
Moreover, in the region z > 0, (p(x, v, Z) satisfies Poisson's equation for
a point charge q located at coordinates (0,0, d). Thus, in this
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region, (p(x, v, z) is a solution to the problem. Now, the uniqueness
theorem tells us that there is only one solution to Poisson's equation
that satisfies a given set of boundary conditions. So, (p(x, v, Z) must be
the correct potential in the region z > 0.

Induced surface charge
The density of charge on the surface is

o
E,=—>0=¢yE, =—€,Vo
€o
So
0= "%,
1 —q(z—d) q(z +d)
¥l (2 +y2+(z— d)2)3/2 (x2+y2+(z+ d)2)3/2 z=0
_ 1 —q(=d) qd
M a2 +y2+ —2)™” (k2 +y2 +a2)"

1 qd

2n (x2 +y2 + d?)
The induced charge is negative (assuming q is positive) and greatest at x =
y = 0, i.e., the plane is closest to the point charge.
The total charge induced on the plane is

Q:fada

3/2

1 r® qd
= 5 572 2nrdr
TJo (x2 +y2 4+ dz)
* 1 d(rz) 2 2 2
_—qdj;) (r2+d2)3/2 > re=x“+y
=4q (r2 + d2)1/2 .

So, the total charge induced on the plate is equal and opposite to the
point charge that induces it.

Force and energy
The force acting on the charge at coordinates (0,0,d) is
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The potential energy:

¢ From method of images, with the two point charges and no conductor,
we have

1 ¢> ¢

Wipatoe = — —— 2 = ———
analog 4me,2d  8meyd

But for a single charge and conductmg plane, the energy is half of this:

W—1W 1 1 ¢2 q?
T analos = TOU e 2d T 16meyd

e From the work required to bring g in from infinity,

d .2 2\ d 2
. q 1 q q
W = -ds = —— —d _ - - —
f S 4neof 472% = 4n60( 4z>m 16me,d

e From the energy stored in the surrounding electric field,

€
W=—Of E%2dr
2 z>0

Since E2(x,y,—z) = E?(x,y,2), we get

q2

16meyd

€9 ) 1
Wanalog =2 ? E‘dt=2W =W = E Wanalog = -
z>0

C. SPHERE OF GROUNDED CONDUCTOR

(1) A grounded conducting sphere of radius a centered on the origin.
Suppose that a point electric charge ¢ is placed outside the sphere at

Cartesian coordinates (b, 0,0), where b > a.
Y
i

b
grounded

conducting
sphere “~

L _Zmmatth
4%\—/ q

By method of images:
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b

grounded

b

conducting RS

. — . .

sphere N ‘\ ,«/ I__f___ \\ real charge
e 1

kj \ X

~ »  image charge
We shall refer to this as the analog problem and obtain

- -

f= - = -

[ (1

!

1 q B q
Ameg | \J(x —b)2 +y2 + 22 J(x — )2+ y? + 22
Now, the image charge must be chosen so as to make the surface @ = 0

correspond to the surface of the sphere.
!

q _ q
Jax—=b)2+y2+22  [(x—c)?+y? + 22
2 7
. q _ q
(x=Db)2+y24+22 (x—c)2+y2+2z2

Let A =q'? / q?. We obtain

(x—c)?+y?+2z2=2(x — b)* + y? + 7]
SA-Dx2+A—-Dy*+ (A -1z -2(c—Ab)x +c?>—2Ab%2 =0

¢(x,y,2) =

2(c — Ab) c? — Ab?
2, e\ A 2 2 - M7
=>x°+ 1-1 XxX+y“+z 11
Since
x2+y?+z2=a?
we have
c
2_cz—)Lbz_Cz—Bbz_c(c—b)_b - _a?
CTTAST TTEDy T Tesh T
b b
/,l_c_az
L

Thus, we obtain

, a? a
q —\/7161—\/;61—1—9-61

The potential is
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1 q

a

54

4meo [/ (x — b)? + y? + 72 22\2
( > + y2 + 72

o(x,y,2) =

X =3

The net charge induced on the surface of the conducting sphere is
a
Q=-q = 1

The force of attraction between the sphere and the original charge is
a
1 q¢ _ 1 pat g ab
4mey (b — ¢)? = 41e a? 2=
(o-5)

SPHERE OF UNCHARGED CONDUCTOR

~

F = - by
4me, (b% — a?)?

An insulated, uncharged, conducting sphere of radius a, centered on
the origin, in the presence of a point electric charge g placed outside the
sphere at Cartesian coordinates (b, 0,0), where b > a.

Y

uncharged

conducting

sphere b
™,

dh .
N

By method of images:
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uncharged
conducting
sphere
, image charges
~

real charge
¥

q ‘ +q' —q', q

),

We shall refer to this as the analog problem and obtain
1 q
4meg [\/(x —Db)2+y2+22

! 4

q q
JX2+y2+2z2  J(x—c)2+y?+ 22

Now, the image charge must be chosen so as to make the surface
!

o(x,y,2) =

-9
4meqa
correspond to the surface of the sphere. Thus, we have
28
=34
‘b
The potential is
(v32) = -
o\xyz)=
4me, [\/(x —b)2 +y2% + 22
a a
54 4

+ J—
Jx2+y2+ 22 22\2
<x—7> + y? + z?

(2) The force of attraction between the sphere and the original charge is
1 q¢ _ 1 qq_ ¢ (a>3 (2b* —a?) |

F= — =
4mey (b — ¢)? x 41e, b? x 4meg \b/) (b? — a?)? x
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3-3 Separation of Variables

A. SYMMETRY AND CURVILINEAR COORDINATES

(1) Cartesian coordinates
Z

LY

23]

X
The potential and electric field:

P = (p(x, v, Z), E= ExX +E, Y+ E 2
Laplace's equation reads:

’¢ 3¢ 0@

a2 oy T2 =0

(2) Spherical symmetry and coordinates
z

x =rsinf cos¢
y =rsinf sin¢
z=rcos@
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The potential and electric field:
©=0(r,0,9), E=EF+E0+Eyp
Laplace's equation reads:

10 fIO) 1 0 ¢ 1 9%
— 2 T — i DL =
r2or (r 6r> + r2sin 6 00 (Slnga(a) +r2 sin 0 d¢?

(3) Cylindrical symmetry and coordinates

Z

[H

h=3

¢
X
X =71rcos¢
y =rsing
z=2z

The potential and electric field:
®= q)(r, o, z), E= E.7 + E¢(i5 +E,2
Laplace's equation reads:
10 ([ d¢ 10%p 0%
o ( 57) ““““

T 0¢? oz
B. SOLUTIONS IN CARTESIAN COORDINATES

(1) For rectangular objects, Laplace's equation reads
02 92 92
¢ ¢ 0%
0x?  0y? 0z?
Assume @ is in the form of products:
o = X@Y()Z(2)
Laplace's equation becomes

=0

32X ()Y (y)Z(2) N 02X ()Y (y)Z(2) N 32X ()Y (y)Z(2) _ 0

0x? dy? 0z2
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(2) Dividing by @ = X (x)Y(y)Z (2), thus, we have
1 9%X(x) 1 0%v(y) 1 9%Z(2)
X(x) 0x2 Y(y) 0y? Z(z) 0z2 -
Since the first term depends only on x, the second only on y, and the
third on z, it follows that each must be a constant:

—————— =k%+1?

Then we obtain three ordinary differential equations
The X equation:

— (K2 +12)X(x) =0
The Y equation:

sz(Y) 2 _
—d?z— + k Y(y) =0

The Z equation:

d*z
—617(22—) + lZZ(Z) =0

(3) The general solution of the X equation
X(x) = Ae\/ﬁ_z_-l-_lzx + Be—\/ﬁ_z_-i-_lzx
The general solution of the Y equation
Y(y) = Csinky + D cos ky
The general solution of the Y equation
Z(z) = Esinlz + F coslz

(4) Since separation of variables yields an infinite set of solutions, one for
each k and [, the general solution is the linear combination of separable
solutions:

(p(x, v, Z) = Z (Ae‘/mlzx + Be‘mlzx) (C sinky + D cos ky)
Kl

’x(Esinlz+Fcole)
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SOLUTIONS IN SPHERICAL COORDINATES

For round objects, spherical coordinates are more natural and
Laplace's equation reads

19 ( ,09 N 1 0 gacp N 1 62(p — o
r2or e ar r2sinf 00 sin 90 ) " r2sin?0a¢?

Assume @ is in the form of products,

¢ =R(MO(OP(¢)

Laplace's equation becomes

1 2(# aR(r)@(e)cp(¢))+ 1 2 <Sin96R(r)®(9)<b(¢)>

r2or or r2sin6 00 00
1 92R(16(0)P(9) 0
r?sin? 6 0?2
2 ( ,0R(MO(B)P(9) 6R(r)@(0)<b(¢)
ar (r ar ) sin6 96 < )
1 aZR(r)@(e)cb(¢)
sin? 6 dp?

Dividing by ¢ = R(r)G)(H)GD((j)), thus, we have
1 9 ( ,0R() 1 1 a0 (. 0000
R(r) ar ( or ) *8) sin6 96 ( 7(9—)
1 1 0%°0(¢p)
q>(¢) sin2@ d¢2

Each term therefore must be a constant:

1 0 OR(1)
R(T) 5 (TZ ar > = l(l + 1)
1 1 a(. 00 1 1 GZCD(qﬁ)
0(0) 5in030 ( T ) S(g)sin20 apz Ut
The second equation gives
1 0 0(8) 1 9*0(¢)
@—(9—) sm969<sm9 50 >+l(l+1)sm 6 +— (¢) 6¢2 =0

Then, each term must be a constant:

! 6l 0 ()+l(l+1) 6=m
@(9) sin EY: sin EY: sm
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Thus we obtain three ordinary differential equations
The radial equation:

4 (2 BRON 4 rey = 0

dr 4 dr =
The angular equation:

i Gd i 9d(§)(9) + (L + 1) sin> 6 0(0) 06)=0

sin® | sinf — sin m =
The azimuthal equation:

020 (o)

_aTl)Z__ + mtb(q,’)) =0
The general solution of the radial equation

B
— l L —
R(T) —AlT' +;ﬁ1_' l= 0,1,2,3"'

The general solution of the angular equation

0(8) = P p(cosB) -+ associated Legendre polynomials
The general solution of the azimuthal equation

®(¢p) = Ce™?®
Thus, the most general separable solution to Laplace's equation is,

B, .

@1 = Ri(r)0;,(0) P (¢) = (Aﬂ’l + rTﬁ) Py m(cos 6)e'™®
Since separation of variables yields an infinite set of solutions, one for
each [, the general solution is the linear combination of separable

solutions:
0= Y RMOO ()
=0
m=-1,
= At +—L) P (cos 9)eim
= Ly lT' -r-l+1 Im COS e
m=—1,1

SOLUTIONS IN CYLINDRICAL COORDINATES

For cylinders, cylindrical coordinates are more natural and Laplace's
equation reads
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N P T —T =0
ror\ or +r2 6¢2+ 0z?

Assume @ is in the form of products,

¢ = R(®($)Z(2)

Laplace's equation becomes

19 (r aR(r)CD((;b)Z(Z)) s 1 02R(P(9)Z(2)

18(6@) 10%p 0%

ror or r? 0>
2R(T)¢(¢)Z(Z)

0z2

(2) Dividing by @ = R(r)(ID((,b)Z (z), thus, we have
1 10 ( 6R(r)> N 1 10%0(¢) N 1 0%Z(2)

R(r)ror "or ¢>(¢)r2 02 Z(z) 0z2
Each term therefore must be a constant:

1 10 ( 0R(r) 1 10%0(p)
mma(r or >+¢(¢)r2 0pz X
_1_6_22_(2_)__k2
Z(z) 0z2

The first equation gives

1 (aR(r)> K22 4 1 ach(q;)

R() or\  or

Thus we obtain three ordinary differential equations
The radial equation:

d <rﬂ2ﬁ2> —k?r?R(r) = ?’R(r) =0

The az1muthal equation:

o(¢)
d(;[)2
The Z equation:
d*Z(z) _
_d?_ +k%Z(z) =0

+120(¢) =0
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E. EXAMPLES:

(1) Two infinite grounded metal plates lie parallel to the xz plane, subject
to the boundary conditions:
@=0wheny=0
@=0wheny=a
@—>0asx—> o

@ =@y when x =0

Find the potential inside this "slot."

ANSWER:
Laplace's equation is
02 02
¢ ¢ _
0x? = 0y?
Using separation of variables, we obtain two ordinary differential
equations:
The X equation:
d’X(x)
————— X
2 k“X(x)=0
The Y equation:
d*y(y)
——=+k?Y(y)=0
dy? + )

The solution is
Pr = X )Yy (v) = (Ae*™ + Be™*)(C sinky + D cosky)
Since
@=0wheny=0=>C-0+D=0=D=0
(p=0wheny=a:>Csinka=0:>kn=2a71, n=123:-
@—o0asx—>0=>A4ef*=0=4=0
The general solution is
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o(xy) = Z Coe™ n*sinkny,  Jy =—
n=1

This solution meets all the boundary conditions except (iv).
At x = 0, we require that

Po = z Cnsinky,y
n=1

Using the orthogonality relation:

a 1r@
f sink,yysink,ydy = E_f [cos(kpr — kn)y — cos(ky, + ky)y| dy
0 0

a —_ !
_ 13 n=n
0, nzxn'
2 a ) 1, n=n'
= é —[0 sink,rysink,ydy =6, ,» = {0’ Nt
normalization
constant
we have
2 (@ 2 [ =
—f sink,'y @ody = —f sinkn,yz Cpsink,ydy
%o aJo n=1

2 (@ o2 (¢
= —f sink,ry @ody = Z Cn —f sink,rysink,ydy
alo = aJy

2 a
= —f sink,'y @ody = Z Cr by
@Jo n=1

Thus, we obtain C,, as

c _ZJ‘“ _ n’nyd
n’—aO(Posm a y

2 a
= —30-—,— (1 —cosn'm)
a n'm
o , n' is even
=<4
—(,10' ) n' is odd
n'n
Therefore, the potential is
4@ 1 _nmx nmwy\ 2@ _ [ sing"
(p(x,y) = —e a sin|—=)=—-—ta
a T . hﬂ
n=13,5 sinh—
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(2) Two infinitely-long grounded metal plates are connected by metal
strips maintained at a constant potential ¢, subject to the boundary
conditions:

@=0wheny=0
@=0wheny=a

@ =@y whenx=»b - (iii)
@ = @y when x = —b - (iv)

v

a

y
—};_/ ) b

Find the potential inside the resulting rectangular pipe.
ANSWER:
Laplace's equation is

=Y

The solution is
o = X (Y (v) = (Aekx + Be‘kx)(C sinky + D cos ky)

The boundary conditions are
@=0wheny=0=>C-0+D=0=>D=0
(p=0wheny=a:>Csinka:O=>kn:2az, n=1273:-

Combining the remaining constants, we are left with
Or = X )Yy (v) = (Ae* + Be™*)Csink,y

This solution meets all the boundary conditions except (iii) and (iv).

The situation is symmetric with respect to x, so @(—x,y) = @(x,y),

and it follows that A = B. Using
ek + e7** = 2 cosh k,x

Thus, the potential becomes

o(xy) = Z C,coshkyxsink,y,  k,=—

n=1

At x = b, we require that
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P = Z C,coshk,bsink,y

n=1
Using the orthogonality relation, we have
2 (@ 2 (@ C
EJ;, sink,ry @ody = EJ;, sink,,ry z C, coshk,bsink,ydy
n=1

2 (@ = 2 (@
= Ef sink,ry @ody = Z C,, cosh k"baf sink,ysink,ydy
0 n=1 0

2 (@ c
= Ef sink,'y @ody = Z Cy coshkypb b,
0 n=1

Thus, we obtain
!

2 a n'm
C, coshk, b= —EO-J‘ sin <——y> dy
a J, a

2 a
= —20-—,— (1 —cosn'm)
a n'nm
0o , n' is even
=14
—(,P—O , n' is odd
n'n
4 1
= Cnl = —30- —————
n'm coshk,/b
Therefore, the potential is
N |
o(xy) = Z “an cosh kb cosh k,x sin(k,,y)
n=1,3,5,
oo nm
4, 1 cosh =X  (mm
~ T Z Meosh®p <_a_ Y )
n=135 cosh—»b

An infinitely long rectangular metal pipe (sides a and b) is grounded,
but one end, at x = 0, is maintained at a specified potential @,. Find

the potential inside the pipe.
vA

a
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b X

/

ANSWER:

The boundary conditions are
@=0wheny=0
@=0wheny=a
@=0whenz=0
@=0whenz=a
@ — 0 when x — o0
@ =@y when x =0 (vi)

The general solution of the X equation
X(x) = Ae\/ﬁ_z_-l-_lzx + Be—\/ﬁ_z_-i-_lzx

The general solution of the Y equation
Y(y) = Csinky + D cos ky

The general solution of the Y equation

Z(z) = Esinlz + F coslz
The boundary conditions are

@=0wheny=0=>C-0+D=0=>D=0
@=0whenz=0=>E-0+F=0=F=0
(p=OWhenyza:Csinka=0:>kn=2a7—T,n=1,2,3---

@=0whenz=a=Esinla=0=l,="", m=123

@ > 0 when x > 00 = AeVkF*+® =0 4 =0

Combining the remaining constants, we are left with

(0]
— |k2+1%2.x . .
(p(x,y,z) = Z Come V" " sink,ysinly,z
n=1

m=
This solution meets all the boundary conditions except (vi).
At x = 0, we require that

©o = Z Cpm Sink,ysinl,,z
n=1

m=1
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Using the orthogonality relation, we have
2 ra 2 b
af sinknrygf sinl,,1z @odydz
0 0

2 (@ 2 (° C
= —f sin kn/y—j sinl,,ry Z Com sink,ysinl,zdydz
aJo b n=1

m=1

4 a rb
P f f sink,ysinl,z@ydydz
0o Jo

- 2@ 2 (b
= Z Com —-f sink,ysink,y dy—f sinl,,rzsinl,,zdz
alJo b Jo

n=1
4 a b =
a}.f f sink,ysinl,z@ydydz = Z Crm On’ nOm’ m
0o Jo n=1

Thus, we obtain

4 a rb
Cn’,m __f f sink,ysinl,, z@,dydz

4 n'my m'nz
(Po_f f sn( )in( b >dydz

n’ or m' is even

_— n' and m’ is odd

o 1690 —p [(B)H(M
o(xy) = Z o, "\f(a) +(%) ¥ sink,y sinl,,z

nmm?
n=1,3,5,
m=1,3,5,
[00]
2 2
16, 1 (E) +(1l’)l_) nmy\ . (mnz
=— —e a sin sin| ——
T nm a b
n:1'3'5'...
m=1,3,5,

(4) The potential ¢y(8) = ksin?8/2 is specified on the surface of a hollow
sphere, of radius R. Find the potential inside and outside the sphere.
ANSWER:

Assume, in the case of azimuthal symmetry, @ = R(r)0(0), we have
two ordinary differential equations
The radial equation:
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d dR(7)

E’l (T —gr—> - l(l + 1)R(T) =0

The angular equation:

d do(o)

a0 (sm 0 _d?_> +1(l+1)sin80B(H) =0

The general solution of the radial equation
R(r)=Art+ _IIBTI

The general solutlon of the angular equation

0(6) = P;(cos ) -+ Legendre polynomials

where
PO =1
P; = cos@
(3 cos? 6 — 1)
2 = ———7——‘
(5 cos3 60 — 3 cos 9)
3=
(35 cos 9 —30cos?6 + 3)
P4 _—

Thus, in the case of azimuthal symmetry, the most general separable
solution to Laplace's equation is,

B
R;(r)0,(6) = <A,r + z+1> P;(cos6)

Since separation of variables yields an infinite set of solutions, one for
each [, the general solution is the linear combination of separable
solutions:

Q= Z R;(r)0,(0) = Z (Alr + l+1> P;(cos 9)
1=0

= 1=0
Inside the sphere:

B; = 0 for all
Thus,

o(r,0) = Z A;rtP,(cos )

At r =R, we req_uire that

o (0) = ZAIRIPI(COS 0)
1=0
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Using the orthogonality relation:

2l+1 T 0
— f P;(cos @)Py(cos@)sinfdb = &, ;1 = 1’
0

—.
normalization
constant

we have
2l +1

s
—7— Py (cos8)@y(6)sinb do

)’

21'+1

__2__f P, (cos B)ZAlRlPl(cos 0)sin6 do
0 1=0

2U04+1 (™ .
=—>—] @o ()P, (cosB)sinb do
0

o2+ (T _
= ZAIR ——2——f P, (cosB)P;(cosB) sin6 db

20 +1
= —?— (pO(O)Pl (cos@)sinf do = ZA R! %

2l +1
= —?— (po (0)P;(cosB)sinb do = Aerl

Thus, we obtam

1 2 +1 (" _
Ay = R ——2——J @o(0)P,(cosB)sin6 db
0
1 20+1 (" (8 _
=I—?7-——2——J k sin > P, (cos8)sin6 do
0
1 2U4+1 ("k _
= RU '——2——f = (1 —cosB)P;(cosB)sin6 db
0
k1 2U'+1
z'ﬁr‘— f(Po—Pl)Pl (cos@)sinf db
k1
T (80— 8117)
k1 k .
==z o U=0
k1 k ,
1= T P

Therefore, the potential is
k r
@ = Agr°Py(cosB) + A;r1P;(cosB) = (1 — 5 ¢os 9)
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¢ Qutside the sphere:
A; = 0 for all [
Thus,

o)

B,
@, 0) = Z 77 P1(cos 0)

1=0
At the surface of the sphere, we require that

B,
Po = Zﬁﬁpl(cos 0)
1=0

Using the orjchogonality relation, we have

204+ 1 (™
_?_ Py (cos 8)@y(6)sin 6 do
Zl' +1
S J P, (cos ) Z 77 Pi(cos 8) sin 6 do
241 (™ :
=———| %o (6)P;1(cosB)sinb do
0
> B, 2l +1
= ﬁﬁ__Z__f P, (cos0)P;(cos ) sin6 do
=0
2U' +
= —7— (po (6)P;(cos0)sinf db = Z RI+T 811
2 +1 Bl’
= —?— cpo ()P, (cosB)sinb db = RUA1
Thus, we obtam
U'+1 2l + i
B, = 5 0(0)P;(cosB)sinb db
0
, 2l +1 0
=RVt . _____ j k sin <2> P,/ (cosB)sin6 db
i, 2U+1 Mk
= RpU'+1 .__2——f = (1 —cos@)P,(cos)sinb db
0
k. 2l +1
ERZ +1. 22 T f (Py — Py)P,(cos 6) sin 0 dO
k

= ERZ’H (50,1’ - 51,1’)
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k k
By ==R%*1=-R , I'=0
N 2 2
B =—ER1+1=—I—€-R2 I'=1
1 2 2 )

Therefore, the potential is
=50 pcos8) + B pycos o) = £ (BB s
¢=7 o(cos 6) —P1(cosf) =7 {———cos

(5) An uncharged metal sphere of radius R is placed in an otherwise

uniform electric field E = EyZ. The field will push positive charge to the
"northern" surface of the sphere, and—symmetrically—negative charge
to the "southern" surface. This induced charge, in turn, distorts the
field in the neighborhood of the sphere. Find the potential in the region
outside the sphere.

B
L

-
=y

ANSWER:
The boundary conditions:
@=0whenr =R
@ - —Eyrcos@ forr » R
The potential is

Q= Z(Alr + l+1—>Pl(c059)

The first condltlon yields
B,
AR + 277 = 0= B = —A R
So, we have
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(6)

R2L+1
©= ZA1< g )Pl(cose)

For r > R, we have

R2l+1
—Eyrcosf = ZA1< )Pl(cos 0) = ZAlr P;(cos 9)

Only | =1 term survive. Thus, we get
—Eyrcos@ = A;r1P;(cosO) > A, = —E,
The potential is

R2l+1 R3
©= ZA, e — | P;(cos @) = —E, <r ———) cos 6

The first term is due to the external field; the second term is attributed
to the induced charge.

The induced charge density is

oo R3
a(0) = —¢ Frle €Eo( 1+ gy cos 8 = 3€yE, cos O
=R

A specified charge density a(6) = k cos 8 is glued over the surface of a
spherical shell of radius R. Find the resulting potential inside and
outside the sphere.

ANSWER:

Inside the sphere:

o(r,0) = Z A;rtP,(cos 9)

1=0
Outside the sphere:

> B
o(r,0) = Z 737 Pi(cos 6)
1=0

The boundary conditions are
(i) at the surface of the Sphere the potential is continuous

B,
ZA R'Py(cos ) = ZRI‘H P,(cos @) = AR = Fz

(ii) the radlal derivative of @ suffers a discontinuity
a(Pout _ a(Pin _ 0o (9)

or or €o
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N By NI 50(6)
= —Z(l +1)——P,(cos0) — Z lA;R"1P,(cos ) = —
Rl+2 €
=0 1=0 0
o,(0
- Z(Zl + 1)A;R"1P(cos 0) = —06(—2
0
1=0
Using the orthogonality relation,
2U+1 (™ _ 0, for L #1'
— ; P (cos0)Pi(cosB)sinfdo =6, = {1, for | =1’
we have
2U+1 (™ N . ,
— P (cos 9)2(2[ + 1)A;R""*P;(cos 8) sin 6 dO
0 1=0

2 +1 (™ o,(6
= ————f P (cos @) —i—) sin6 do
2 0 €o
- B _
= Z(Zl + AR — P, (cos0)P;(cosB)sinb db
1=0 0

P,/ (cosB)sin6 db

2 +1 f“ao(e)
==

€o

P,/ (cosB)sin6 db

- 2U+1 (Toy(0
= Z(Zl + DARTIS, = J 0(0)
=0 0

2 €
Thus, we can obtain A; as

(Zl’ n 1)Aerl,_1 _ 2U + 1]”0'0(9)
0

Py (cosB)sinb db

2 €0
N 1fn (0P, (cos 0) sin O dO
v = R 2, o y(cos @) sin
__ 1 f lcoso P (cos ) sin 0 dO
= rri 2, cos @ P, (cos 0) sin
Since P;(cos8) = cos 6, we have
4 k 21’+1f”P( 8)P,/(cos 6) sin 0 d6
e - . cos r(cos 0) sin
T eRUCIQU 4+ 2yt !
k
= 7 “Oq
RU-IQU+1) ¢
0 , forl’ #1
)= k k
=4 for I =1

€RTI(2-1+1) 3e,’
The potential inside the sphere is therefore
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)

k
@(r,0) = A;rtPi(cosB) = E 0
0
whereas outside the sphere
142 3

B, 1
o(r,0) = 2 P;(cos ) = — P;(cos @) = &g?j cos @
* In particular, if k = 3€yEj, then the potential inside is
RIY0
o(r,0) = 3 T cosd = Eyrcosf = Eyz
0

and the field is

Ei - —E()ZA
which is exactly right to cancel off the external field. Outside the

sphere the potential due to this surface charge is
3 3

EyR
o(r,0) = ——60—7—5c059 =E, = cos @

Find the potential outside an infinitely long metal pipe, of radius R,

placed at right angles to an otherwise uniform electric field EO. Find
the surface charge induced on the pipe.

'y

e
T
— T - 1
< / +

—

L

/

:}E{]

ANSWER:

Assume, in the case of cylindrical symmetry, @ = R(r)CD((p), we have
two ordinary differential equations

The radial equation:

d ( dR(r) 5
Ta;(?‘-(;-)-l R(T)—O
The azimuthal equation:
()
- 7 o)) =
iz T 2o(¢p) =0

The general solution of the azimuthal equation
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®)

d)(q,')) = (C;sinl¢ + D; cos lg
Moreover, since <I>(¢ + Zn) = CD((;[)), I must be an integer: [ = 0,1,2,3 -+
The general solution of the radial equation

l B
Alr +_l , liO
r

AO + BO lnT ) l =0
Since separation of variables yields an infinite set of solutions, one for

R(r) =

each [, the general solution is the linear combination of separable
solutions:

C B
@=Ay+Bylnr+ Z <Alrl + ;%) (Cl sinlg + D; cosl¢)
=1

The boundary conditions:
@ - —Egx = —Eyrcos¢ for r>R

= —EyRcos¢ = Ay + Bylnr + Z (A R' + ——> (Cl sinl¢g + D; cos ld))

ﬁAO—BO—Cl—Oanle—Oforlil

= —EyRcos¢p = z (A R' + g—) D; coslgp
Absorbing D, 1nt0 A1 and B, we are left with

—EyRcos¢p = <A1R1 + f;)—l) cos¢ ~ AR cos¢p > A, = —E,
Since

@=0whenr =R

_ - B; B;
:0—<A1R Rl)cosqb:A R———R;
Thus, the potential is
By R?
(p(r, ¢)) = <A1r + _r_> cos¢ = (—Eor +E, _r_> cos ¢

The surface charge is

o9 _ R?
0= —€y—= p —€o| —Eq — Ej Rz cos ¢ = 2eqE cos ¢

A specified charge density o(8) = asin5¢ is glued over the surface of
an infinite cylinder of radius R. Find the resulting potential inside and
outside the cylinder.
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ANSWER:
Inside the cylinder:

o(r,¢) =4, + Z r'(Cysinlg + Dy cos lg)
=1
Outside the cylinder:
! 1 r I
o(r,¢) =4 + Zﬁ(cl sinl¢g + Dj cos l¢)
=1
Applying the boundary conditions:

a(pout _ a(pin _ Op (9)

ar Jar €
Thus, we have

l
Z T (C{ sinlgp + D] cos )

1=1
— Z IR'Y(C;sinlg + Dy coslgp) = —Eisin 5¢
0

Evidently -

D;=D; =0

C,=C =0forl#5

a 5 , 4

=>E—O=EEC5+5R CS
Since @,y (R) = @;,(R), we have

Ay + R3Cssin5¢ = Ap + 1—% Cisin5¢

= A, = Ay and R°Cs = CL/R®
Here, we can let Ay = Ay = 0.
Thus, we get

Cs ., . a . aR®
a = 5¢g <§3+R Cs> = 10€gR*C5 = C5 = 1060R4,,C5 = 106,

Therefore, the potential is
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